Class XII Chapter 8 - Application of Integrals Maths

Find the area of the region bounded by the curve y? = x and the lines x = 1, x = 4 and
the x-axis.

Answer
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The area of the region bounded by the curve, y? = x, the lines, x = 1 and x = 4, and the

x-axis is the area ABCD.
Area of ABCD = rl dx
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Question 2:
Find the area of the region bounded by y* = 9x, x = 2, x = 4 and the x-axis in the first

quadrant.
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The area of the region bounded by the curve, y> = 9x, x = 2, and x = 4, and the x-axis
is the area ABCD.

Area of ABCD = r vdx
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Question 3:
Find the area of the region bounded by x> = 4y, y = 2, y = 4 and the y-axis in the first
quadrant.

Answer

Y

The area of the region bounded by the curve, x> = 4y, y = 2, and y = 4, and the y-axis
is the area ABCD.

Area of ABCD = _E.r dy
= [[2yfydy
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It can be observed that the ellipse is symmetrical about x-axis and y-axis.

~ Area bounded by ellipse = 4 x Area of OAB

Area of OAB = _r_va’x
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Therefore, area bounded by the ellipse = 4 x 3n = 12n units

Find the area of the region bounded by the ellipse 4

Answer
The given equation of the ellipse can be represented as
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It can be observed that the ellipse is symmetrical about x-axis and y-axis.

~ Area bounded by ellipse = 4 x Area OAB



. Area of OAB = [ ydx

-3 /1_%& [Using (1)]
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Therefore, area bounded by the ellipse =

Question 6:

Find the area of the region in the first quadrant enclosed by x-axis, line = illfiv"land the
circle ¥ TV =4

Answer

The area of the region bounded by the circle, * T3 =% :ﬁJ:’ and the x-axis is the
area OAB.
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3.1
The point of intersection of the line and the circle in the first quadrant is ( ]
Area OAB = Area AOCA + Area ACB
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Therefore, area enclosed by x-axis, the line™ = ‘“'EJ"', and the circle * T =4in the first
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Question 7:
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Find the area of the smaller part of the circle x*> + y* = a° cut off by the line 2

Answer
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The area of the smaller part of the circle, x* + y? = a?, cut off by the line, V2 , is the

area ABCDA.
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It can be observed that the area ABCD is symmetrical about x-axis.

~ Area ABCD = 2 x Area ABC



Area of ABC = r, v

' 7 2
=Lwr —x"dx
42

X 5 P HE . X ’
= Eu’a'—x' +Esm '—1
a

v

ta]| =

Y

_nz [n] a J . oa  a . _1( 1 ]
=Sl ||l e o sin | ——=
2\2) 242 2 2 2

E_Li_ﬂ_'m
4 22242 214

dam a am

2 2
— Area ABCD=2| | Z_1||=L 1 2
412 212
[
X :T
Therefore, the area of smaller part of the circle, x*> + y* = a?, cut off by the line, 2 ,
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is 2\2 units.

Question 8:

The area between x = y? and x = 4 is divided into two equal parts by the line x = a, find
the value of a.

Answer

The line, x = a, divides the area bounded by the parabola and x = 4 into two equal

parts.



~ Area OAD = Area ABCD
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It can be observed that the given area is symmetrical about x-axis.

= Area OED = Area EFCD



Area OFED = I yx
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Area of EFCD = _C Vaxdx
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From (1) and (2), we obtain
E(a]f =E|:8—[a}3}
= 2-((:]3 =8
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Therefore, the value of a is {4} .

Question 9:

Find the area of the region bounded by the parabola y = x* and y= |1|
Answer

. V=|x
The area bounded by the parabola, x> = y,and the line," | |, can be represented as
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The given area is symmetrical about y-axis.

~ Area OACO = Area ODBO

The point of intersection of parabola, x> = y, and line, y = x, is A (1, 1).
Area of OACO = Area AOAB - Area OBACO
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= Area of OACO = Area of AOAB - Area of OBACO



Find the area bounded by the curve x> = 4y and the line x = 4y - 2

Answer

The area bounded by the curve, x> = 4y, and line, x = 4y - 2, is represented by the
shaded area OBAO.

"Y.

Let A and B be the points of intersection of the line and parabola.

(1
A are —L—J
Coordinates of point 4 .
Coordinates of point B are (2, 1).
We draw AL and BM perpendicular to x-axis.
It can be observed that,
Area OBAO = Area OBCO + Area OACO ... (1)

Then, Area OBCO = Area OMBC - Area OMBO



= '[} I+2dx— '[:II J:cir

2 3
-1 -1
:_I { ] +2(_]) . _I ( }
4 2 4 3
_ 1 7
402 12
L
2 8 12
_T
24
(5 ?] 9 .
_+»,_ =— units
Therefore, required area = 6 24/ 8

Question 11:

Find the area of the region bounded by the curve y? = 4x and the line x = 3

Answer

The region bounded by the parabola, y?> = 4x, and the line, x = 3, is the area OACO.
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The area OACO is symmetrical about x-axis.

~ Area of OACO = 2 (Area of OAB)

Area OACO =2 L ¥ a’x}

=2 f?w’?ﬂ’x

=83

Therefore, the required area is 3"@ units.

Question 12:
Area lying in the first quadrant and bounded by the circle x> + y? = 4 and the lines x = 0

and x =2 is
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Answer

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is
represented as
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Thus, the correct answer is A.



Question 13:

Area of the region bounded by the curve y* = 4x, y-axis and the liney = 3 is
A.2

b3 W kO

D.
Answer
The area bounded by the curve, y? = 4x, y-axis, and y = 3 is represented as
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Thus, the correct answer is B.



Find the area of the circle 4x* + 4y? = 9 which is interior to the parabola x> = 4y
Answer

The required area is represented by the shaded area OBCDO.

Solving the given equation of circle, 4x*> + 4y? = 9, and parabola, x> = 4y, we obtain the

B [\El | and D | —ﬁl |
point of intersection as 2) . 2) .

It can be observed that the required area is symmetrical about y-axis.

~ Area OBCDO = 2 x Area OBCO

We draw BM perpendicular to OA.
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Therefore, the coordinates of M are .
Therefore, Area OBCO = Area OMBCO - Area OMBO
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Question 2:
Find the area bounded by curves (x - 1)’ +y*=1and x> + y? =1

Answer
The area bounded by the curves, (x - 1)> + y* = 1 and x> + y? = 1, is represented by

the shaded area as



On solving the equations, (x - 1)*> + y> = 1 and x* + y? = 1, we obtain the point of
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It can be observed that the required area is symmetrical about x-axis.

~ Area OBCAO = 2 x Area OCAO

We join AB, which intersects OC at M, such that AM is perpendicular to OC.

1
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The coordinates of M are * 2 .



= Area OCAQ = Area OMAO + Area MUAM
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Therefore, required area OBCAO = ‘* units

Question 3:

Find the area of the region bounded by the curvesy = x>+ 2,y = x, x = 0 and x = 3
Answer

The area bounded by the curves, y = x>+ 2, y = x, x = 0, and x = 3, is represented by
the shaded area OCBAO as
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Then, Area OCBAO = Area ODBAO - Area ODCO
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Using integration finds the area of the region bounded by the triangle whose vertices are
(-1, 0), (1, 3) and (3, 2).

Answer

BL and CM are drawn perpendicular to x-axis.

It can be observed in the following figure that,

Area (AACB) = Area (ALBA) + Area (BLMCB) - Area (AMCA) ... (1)



Equation of line segment AB is
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Equation of line segment BC is
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Equation of line segment AC is
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Therefore, from equation (1), we obtain



Area (AABC) = (3 + 5-4) = 4 units

Using integration find the area of the triangular region whose sides have the equations y
=2x+1,y=3x+1and x = 4.

Answer

The equations of sides of the triangle arey = 2x +1, y = 3x + 1, and x = 4.

On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C
(4, 9).

It can be observed that,
Area (AACB) = Area (OLBAO) -Area (OLCAO)

= [[(3x+1)de~ [ (20+1)dx
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Smaller area enclosed by the circle x> + y* = 4 and the linex + y = 2 is
A.2(n-2)



B.n-2

C.2n-1

D.2(n+ 2)

Answer

The smaller area enclosed by the circle, x> + y* = 4, and the line, x + y = 2, is

represented by the shaded area ACBA as

It can be observed that,
Area ACBA = Area OACBO - Area (AOAB)

= [Va-xTde— [[(2-x)ax
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Thus, the correct answer is B.

Area lying between the curve y* = 4x and y = 2x is
2
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The area lying between the curve, y* = 4x and y = 2x, is represented by the shaded

area OBAO as
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The points of intersection of these curves are O (0, 0) and A (1, 2).

We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0).

~ Area OBAO = Area (AOCA) - Area (OCABO)
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Thus, the correct answer is B.



Find the area under the given curves and given lines:
(i) y = x>, x = 1, x = 2 and x-axis
(i) y = x*, x = 1, x = 5 and x -axis
Answer
i. The required area is represented by the shaded area ADCBA as
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ii.  The required area is represented by the shaded area ADCBA as



AT Y g
L i1,

Area ADCBA = _[‘x*afr

|
5 5
|
—(s5)'

(5) 5
625
5

— 624.8 units

Question 2:
Find the area between the curves y = x and y = x>

Answer
The required area is represented by the shaded area OBAO as
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The points of intersection of the curves, y = x and y = x?, is A (1, 1).

We draw AC perpendicular to x-axis.

~ Area (OBAQO) = Area (AOCA) - Area (OCABO) ... (1)

Find the area of the region lying in the first quadrant and bounded by y = 4x?, x = 0, y
=landy =4



Answer
The area in the first quadrant bounded by y = 4x%>, x =0,y =1, and y = 4 is
represented by the shaded area ABCDA as
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Question 4:

y=|x+3 _[: x + 3lx

Sketch the graph of -

Answer

and evaluate



The given equation

The corresponding

- y=r+3
is

values of x and y are given in the following table.

x|-6|-5]|-4

-3]1-2]-1]0

y| 3 2 1

0 1 213

On plotting these p

& -5 4 3.2 |

It is known that,

'=[x+3
oints, we obtain the graph of ! |t |as follows.

Yy

(¥+3)=0for —6=x<-3and (x+3)=0for —3<x=<0

J-“r|(x+3}|¢ = —_E{x + 3 )dx + J‘_I;[x +3 dx
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Find the area bounded by the curve y = sin x between x = 0 and x = 2n

Answer
The graph of y = sin x can be drawn as
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~ Required area = Area OABO + Area BCDB

= ’[‘sin Jm’x+‘ f“ sin x oy
= [~cosx]; +‘[—cc-s 1]11|
=[-cosm+cos0]+|-cos2m+cosm
=1+1+|(-1-1)

=2+|-2|

=242 =4 units

Find the area enclosed between the parabola y* = 4ax and the line y = mx

Answer
The area enclosed between the parabola, y?> = 4ax, and the line, y = mx, is represented

by the shaded area OABO as
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The points of intersection of both the curves are (0, 0) and “™ ™M

We draw AC perpendicular to x-axis.

~ Area OABO = Area OCABO - Area (AOCA)

LE 4

= I:": 2Jax de— [ mx dx
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L der



Find the area enclosed by the parabola 4y = 3x? and the line 2y = 3x + 12
Answer
The area enclosed between the parabola, 4y = 3x?, and the line, 2y = 3x + 12, is

represented by the shaded area OBAO as

3

4y = 337

N T T

The points of intersection of the given curves are A (-2, 3) and (4, 12).

We draw AC and BD perpendicular to x-axis.

- Area OBAO = Area CDBA - (Area ODBO + Area OACO)



- L%{h—ﬂﬂ]dx— [%m

N 4 AT 3
=1F‘i+|h} _i{i}
2| 2 L o43 ],
- 24 +a8-6+24)- L64+8]
> 4

| 1
=5[90]-5172]
=45-18

=27 units

Question 8:
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Find the area of the smaller region bounded by the ellipse 9 4 and the line
3 2
Answer

The area of the smaller region bounded by the ellipse, Y 4, and the line,

3

, is represented by the shaded region BCAB as
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Find the area of the smaller region bounded by the ellipse & b* and the line

a b

Answer

, and the line,

~ Area BCAB = Area (OBCAQ) - Area (OBAO)
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Question 10:

Find the area of the region enclosed by the parabola x> = y, the line y = x + 2 and x-
axis

Answer

The area of the region enclosed by the parabola, x*> = y, the line, y = x + 2, and x-axis

is represented by the shaded region OABCO as
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The point of intersection of the parabola, x*> = y, and the line, y = x + 2, is A (-1, 1).

= Area OABCO = Area (BCA) + Area COAC




4+l =
Using the method of integration find the area bounded by the curve 't| |‘L 1

[Hint: the required region is bounded by linesx +y =1, x-y=1,-x+y =1and - x
-y =11]
Answer

x| +[y[ =1

The area bounded by the curve, , is represented by the shaded region ADCB

as

The curve intersects the axes at points A (0, 1), B (1, 0), C (0, -1), and D (-1, 0).
It can be observed that the given curve is symmetrical about x-axis and y-axis.

~ Area ADCB = 4 x Area OBAO




Find the area bounded by curves {['T’y}:'v 2x" and y =|x|]

Answer

{(x.y):yzx" and y = x|}

The area bounded by the curves, , is represented by the

shaded region as
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It can be observed that the required area is symmetrical about y-axis.

Required area = EEhrca [DL‘AO]—hrca(UChD(J]]

=2 _Ijxafr— jszdx:|

5] 5]

Il
(1]
1
b | =
|
e | —
| I |

]
-2
1
=
| IS
i
| —
=
_:_-:-‘.
o

Using the method of integration find the area of the triangle ABC, coordinates of whose
vertices are A (2, 0), B (4, 5) and C (6, 3)



Answer

The vertices of AABC are A (2, 0), B (4, 5), and C (6, 3).

A
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Yt
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Equation of line segment AB is

Equation of line segment BC is

3-35
—5=—|x-4
5= tx 4
2y—10=-2x+8
2y=-2x+I18

y=-x+9 «(2)

Equation of line segment CA is
0-3

=3= x=6

y=3=5—(x-0)

—4y+12=-3x+18

dy=3x-6

y=2(:-2) -(3)



Area (AABC) = Area (ABLA) + Area (BLMCB) - Area (ACMA)

= f%{x—E}dx+ -['{—.z: +9)dx — _[%{A— 2)dx

= 4 2 & 3 i
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2| 2 z 2 4 4L 2 2
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=13-6
=7 units

Question 14:
Using the method of integration find the area of the region bounded by lines:
2x+y=4,3x-2y=6andx-3y+5=0

Answer

The given equations of lines are
2x+y=4..(1)

3x -2y =6 .. (2)

And, x-3y +5=0..(3)




The area of the region bounded by the lines is the area of AABC. AL and CM are the
perpendiculars on x-axis.
Area (AABC) = Area (ALMCA) - Area (ALB) - Area (CMB)
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Question 15:

X))y’ <4xdx’ +4y7 <9
Find the area of the region {[r,;} yosAxdxT+4) }

Answer

{[x,y}:y: <dx,dx’ + 4yt < t)}

The area bounded by the curves, , is represented as
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1
The points of intersection of both the curves are \2
The required area is given by OABCO.

It can be observed that area OABCO is symmetrical about x-axis.

~ Area OABCO = 2 x Area OBC

Area OBCO = Area OMC + Area MBC

| 3
= ‘LJE\.":' ey + I, %w‘?—-flx: dx

-

= ‘[IJEJ} dx + I, %«JW cl

Area bounded by the curve y = x°, the x-axis and the ordinates x = -2 and x = 1 is
A.-9
15

B. 4
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p. 4
Answer
Y Y |
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X X
(—?.—3][},
L 1.,.1F L ]
x=-2 x=1

Required area = [ vdx

= ‘r? xdx

:[ I —4]:—|S units
4 4

Thus, the correct answer is B.

Question 17:

3 —

The area bounded by the curve y |x|, x-axis and the ordinates x = -land x =1 is
given by
[Hint: y = x’ifx > 0andy = -x? if x < 0]
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Required area = [I ylx
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Thus, the correct answer is C.



Question 18:

The area of the circle x* + y* = 16 exterior to the parabola y* = 6x is

(o= 5)
g(.f.mﬁ]
(5=-45)
§(4n+£]

Answer

D.

The given equations are
x>+ y*=16..(1)
vy’ = 6x ... (2)

f

Area bounded by the circle and parabola



=2[ Area(OADO)+ Area( ADBA) |

=2_ijde+ _E\J'lﬁ—xzdx}

2
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. 4
~2lJe it +2[§J|6—x3+?sin 'ﬂ

3
2 i

—2;'?1><—|:x3} +2[8 = —=16-4 -8sin” '[%H

=£(zﬁ)+z[4n—ﬁ—sﬂ

¥

]f';’_ 8m —4\5——::
4

= 4ﬁ+6x—3\5—2n]
_£+4x]

= _4T[+£] units

Area of circle = n (r)?
=n (4)°
= 16n units

.. Required area = 16m —%[41[ + J:E]
=%|:4><3ﬂ—4ﬂ— ﬁ:|
:%(Bn - -u".":) units

Thus, the correct answer is C.



The area bounded by the y-axis, y = cos x and y = sin x when
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Answer
The given equations are
y =cos x ... (1)
And, y = sin x ... (2)
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Required area = Area (ABLA) + area (OBLO)

= -rL xedy + .I-.\!J xedy
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Integrating by parts, we obtain

0

<

X

=

ra| =



=[y003'] y—ﬁLrJr[Twm x+¢{:]:

. | 1 1 [ B 1
{ (1)~ «E [\E}LE]J{\EN" [‘UEJ-'_ ]—2—1}
- 1 n 1

TN ARG RNN R I
2

=ﬁ_l

=/2 —1 units

Thus, the correct answer is B.
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Therefore, the required area is *



